
Swing State: Consistent Updates for Stateful and
Programmable Data Planes

Shouxi Luo∗ Hongfang Yu
University of Electronic Science and

Technology of China

Laurent Vanbever
ETH Zürich

ABSTRACT
With the rise of stateful programmable data planes,
a lot of the network functions that used to be imple-
mented in the controller or at the end-hosts are now
moving to the data plane to benefit from line-rate pro-
cessing. Unfortunately, stateful data planes also mean
more complex network updates as not only flows, but
also the associated states, must now be migrated con-
sistently to guarantee correct network behaviors. The
main challenge is that data-plane states are maintained
at line rate, according to possibly runtime criteria, ren-
dering controller-driven migration impossible.

We present Swing State, a general state-management
framework and runtime system supporting consistent
state migration in stateful data planes. The key insight
behind Swing State is to perform state migration en-
tirely within the data plane by piggybacking state up-
dates on live traffic. To minimize the overhead, Swing
State only migrates the states that cannot be safely re-
constructed at the destination switch.

We implemented a prototype of Swing State for P4.
Given a P4 program, Swing State performs static analy-
sis to compute which states require consistent migration
and automatically augments the program to enable the
transfer of these states at runtime. Our preliminary re-
sults indicate that Swing State is practical in migrating
data-plane states at line rate with small overhead.

CCS Concepts
•Networks → Network architectures;
Programmable networks; Network management;

∗Work performed while interning at ETH Zürich.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

SOSR’17, April 3–4, 2017, Santa Clara, CA, USA

c⃝ 2017 ACM. ISBN 978-1-4503-4947-5/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3050220.3050233

Keywords
Network updates; Software-Defined Networking; P4;
Stateful programmable data planes.

1. INTRODUCTION
By enabling stateful applications to run directly in

the data plane, at line rate, programmable data planes [9,
23, 8, 29, 28, 16, 24] have recently emerged as a promis-
ing research area.
Yet, despite making SDNs more powerful, maintain-

ing states in the data plane also calls for new consistent
update mechanisms as it prevents traditional update
techniques from working, and this, for three main rea-
sons. First, the fact that data-plane states can be up-
dated at line rate—at speeds that can reach Tbps [5]—
prevents any software-based controller from consistently
moving states from one device to another. Inconsistent
migration is a problem for any data-plane application
that requires strong-consistency network-wide. Exam-
ples of such applications include stateful firewalls track-
ing dynamic flow characteristics (e.g., low-level TCP
states [30]) or anomaly detection applications [22]. Sec-
ond, even ignoring states dynamism, the exact set of
states to be migrated may actually be unknown to the
controller, preventing it from performing the migration
in the first place. Indeed, the states location in memory
can differ from device to device according to runtime
factors (e.g. a hash computed on packet headers) that
are invisible to the controller. Third, data-plane states
can be shared across multiple flows, forcing these flows
to be migrated at the same time to avoid inconsistency.
Again, the exact flows to migrate can depend on run-
time factors that are invisible to the controller.

This work We present Swing State, a general migra-
tion framework for stateful data planes. Swing State
addresses the above challenges by consistently moving
states from one device to another entirely within the
data plane, at line rate. The key idea is to have each
packet record the state values it reads at the source data
plane, carry them to the destination device (through
piggybacking), and override the memory locations it
reads there. Once the corresponding states in the source

http://dx.doi.org/10.1145/3050220.3050233

Else

Flowlet switching

Control flow Data-plane functionHeaders, metadatas

flowlet

drop_heavy_hitter_table

set_heavy_hitter
_count_table new_flowlet

ecmp_group ecmp_nhop

forward

In
Ingress pipeline

Out

Match+action tableTable

DeparserEgress pipelineParser
Queue/
Buffers

Figure 1: Abstract data-plane model used by P4 with a
showcase of how data-plane functions are implemented.

and the destination devices are synchronized, flows can
be migrated using any existing network update tech-
niques such as [26]. Swing State is generic and enables
to consistently shift data-plane states pertaining to any
P4 program, without human intervention.

Swing State achieves consistent data-plane state mi-
gration in three consecutive steps. First, prior to deploy-
ing a P4 program, Swing State automatically analyzes
it to figure out: (i) which states require live migration
(because they cannot be safely reconstructed from the
traffic); and (ii) which flow headers can update them at
runtime. Second, Swing State augments the P4 program
to enable the live migration of these states. Third, upon
a state migration request pertaining to a set of flows,
Swing State configures the source switch to piggyback
the relevant state values onto the corresponding traffic.
The destination switch then decapsulates these values
and overrides its own states accordingly. Once the states
are synchronized, Swing State lets the source temporar-
ily mirror the relevant traffic to the destination and no-
tifies the controller that it can safely reroute the flows.

Novelty While consistent network updates has been
the topic of extensive research (e.g., [31, 26, 15, 32]), we
are not aware of any technique ensuring per-packet con-
sistency in the presence of data-plane states. Also, with
respect to consistent state migration initiatives in the
context of Network Function Virtualization [13], mid-
dleboxes [25], or network controllers [14, 27, 33], the
key novelty of Swing State is that it works at line rate,
over hardware-based data planes. In contrast, previous
works focused on migrating software-maintained states
that are up to orders of magnitude less dynamic.

Contributions To sum up, our main contributions are:

• Swing State, a general state-management framework
alongside with a runtime system which enables live
state migrations in any P4-enabled network (§2);

• A static analysis algorithm which automatically iden-
tifies the states requiring live migration in a P4 pro-
gram (§3), together with an augmentation procedure
to actually support live migration at runtime (§4);

• An efficient state synchronization procedure (§5);
• An implementation of Swing State along with a pre-
liminary evaluation assessing its feasibility (§6).

SDN
Controller

Swing State Controller

@deploy-time @runtime

A
P

I

S4

S1 S2
S3

S5

S6

moveStates (source_switch,
destination_switch,
flow_match_fields,
tunnel_id)

P4 Analyzer (§3)

P4 Modifier (§4)
(§5)State

Manager

Figure 2: Swing State architecture. Using the moveS-
tates primitive, SDN controllers can instruct the Swing
State runtime to consistently migrate the states main-
tained for one or more flows from one switch to another.

2. MOTIVATION
In this section, we first explain with a simple example

how P4 program leverages data-plane states and why it
is hard to shift them around (§2.1). We then describe
the core principles behind Swing State (§2.2).

2.1 Background
Stateful P4 data planes In P4-enabled switches, data-
plane states (stored in registers1) reside in the device’s
ingress or egress pipelines and are maintained by ac-
tions. P4 developers construct data-plane functions by
defining match+action tables, along with control flows,
and header parsers/deparsers.

As an illustration, P4 enables to easily implement
a stateful firewall which automatically drops the traf-
fic originating from heavy hitters and load-balances the
rest. Figure 1 depicts one possible implementation [4]. It
involves two tables connected with a conditional control
flow. The first table, set_heavy_hitter_count_table,
counts the packets in each TCP flow (m.pktcnt), be-
fore caching the result in hh_pktcnt by hashing the
packet’s header (see Line 18–23 in Figure 3). If this
count is larger than HH_THRESHOLD, the packet goes
to the drop_heavy_hitter_table where it is dropped;
otherwise, it goes to the reset ingress pipelines where it
is load-balanced according to the flowlet it belongs to.

Update scenario Suppose that switch S3 (Figure 2)
runs the aforementioned application and that flows from
S1 to S2 (crossing S3) have been flagged as heavy. Now
consider that we need to reboot S3 (e.g., to perform
a firmware update). To avoid impacting the traffic, we
want to move flows away from S3 to S4. Yet, simply

1register is one kind of state residing in data plane.
Other state types include counter and meter. Unlike
registers though, they are more akin to write-only ob-
jects as they can only be referenced in special primitive
actions [23]. Thus, this paper focuses on register states.

1 #define REG_SIZE 8192
2 field_list l4_fields {
3 ipv4.srcAddr;
4 ipv4.dstAddr;
5 ipv4.protocol;
6 tcp.srcPort;
7 tcp.dstPort;
8 }
9 register hh_pktcnt{

10 width: 16;
11 instance_count: REG_SIZE;
12 }
13 field_list_calculation l4_hash {
14 input { l4_fields;}
15 algorithm : crc16;
16 output_width : 16;
17 }
18 action set_hh_count() {
19 //m is an user-defined metadata
20 modify_field_with_hash_based_offset(m.flow_id,

0, l4_hash, REG_SIZE);
21 m.pktcnt = hh_pktcnt[m.flow_id] + 1;
22 hh_pktcnt[m.flow_id] = m.pktcnt;
23 }
24 //this table only has a default action
25 table set_heavy_hitter_count_table {
26 actions { set_hh_count; } size: 0;
27 }

Figure 3: An implementation of set_heavy_hitter_
count_table (see Figure 1), written in P4 v1.1 [1].

shifting flows from S3 to S4 (e.g. using [26]) would cause
the runtime states stored in hh_pktcnt to be lost, al-
lowing traffic that should be dropped to go through.

This example sheds light on two fundamental ques-
tions regarding consistent data-plane states migration:

What to migrate? Not all states require consistent
migrations: some functions can automatically recover
their states from live traffic. This is for instance the case
for our implementation of flowlet detection (Figure 4)
which records each flow’s last reference time and cur-
rent flowlet ID in register lasttime and flowlet_id.
Migrating these states is not necessary as they can be
reconstructed nearly immediately at the destination.

How to migrate? The simplest way to migrate states
is to request the control plane to export the states from
the source device to the destination device (e.g., simi-
larly to [13]).

Unfortunately, simply migrating states via the con-
trol plane does not work because of: (i) the speed at
which states can be updated (Tbps in the new gen-
eration of programmable data-planes [5]); and (ii) the
flexible support of state references which makes it hard,
if not impossible, to infer the exact states location at
runtime.

The latter problem results from the fact that many
applications (e.g. [6, 13, 25, 28]) reference per-flow states
using a hash of the corresponding packet headers. As
different switches might use different set of inputs for

1 register lasttime {//used to detect new flowlets
2 width: 32; instance_count: REG_SIZE;
3 }
4 register flowlet_id {//used for ecmp hashing
5 width: 16; instance_count: REG_SIZE;
6 }
7 action lookup_flowlet_map() {
8 m.flow_idletime = intrinsic_metadata.

ingress_global_timestamp-lasttime[m.flow_id];
9 lasttime[m.flow_id] = intrinsic_metadata.

ingress_global_timestamp;
10 m.flowlet_id = flowlet_id[m.flow_id];
11 }
12 //compute inter-packet gap and update lasttime
13 table flowlet {
14 actions { lookup_flowlet_map; } size: 0;
15 }
16 action update_flowlet_id() {
17 m.flowlet_id = m.flowlet_id + 1;
18 flowlet_id[m.flow_id] = m.flowlet_id;
19 }
20 table new_flowlet {
21 actions { update_flowlet_id; } size: 0;
22 }

Figure 4: An example implementation of flowlet and
new_flowlet shown in Figure 1, written in P4 v1.1 [1].

hashing or have different capacity/size for the regis-
ter arrays, the resulting state location can end up be-
ing device-specific. For instance, the destination switch
might employ a less-specific input for hash calculation
(e.g., based on 4 tuples instead of 5) and have a larger
REG_SIZE, in which case each flow’s state location (e.g.,
Line 20, Figure 3) would shift. Even worse, the fact
that P4 supports the use of runtime data (e.g., action
parameters) as input to the hash functions can make
it impossible for the control plane to infer the exact
reference to use for accessing each state at compilation
time.

2.2 Overview
To support consistent and live network updates in

stateful data planes, we propose Swing State, a general
state-management framework and runtime system of-
fering one main primitive: moveStates (Figure 2). At
its core, Swing State adopts the novel idea of automat-
ically identifying the states requiring consistent migra-
tion then letting each packet/flow itself move the state
values it has read by leveraging the programmability of
data plane. With Swing State, devices can perform live
migrations of data-plane states without freezing traffic
nor the rule updates made by the control plane.

Swing State capability of moving states at runtime
means that developers can write P4 applications with-
out having to care about migration. At deploy time,
Swing State Analyzer analyses their P4 program to infer
which states: (i) require migrations; and (ii) are shared
between multiple flows meaning they should be treated
as a whole. Based on this analysis, Swing State Mod-

ifier automatically augments the program to support
live state migrations. By using the augmented program,
reconfigurable devices automatically support consistent
and live migration for data-plane states.

Once the SDN controller wants to migrate a set of
flows f from one device to another, the State Manager
first checks whether this migration is safe based on its
state analysis. In case f shares critical states with oth-
ers, or it uses device-specific states (see below), the State
Manager raises an alert along with remarks. Otherwise,
the State Manager configures the source and destination
devices to migrate data-plane states. Once all required
states have been migrated, the State Manager notifies
the controller that it can update f ’s paths safely.

3. STATIC ANALYSIS
In this section, we describe how Swing State analyzes

P4 programs to identify state types (§3.1) along with
the corresponding flow spaces that use them (§3.2).

3.1 State taxonomy
We classify P4 data-plane states along two dimen-

sions: (i) their usage (soft vs hard); and (ii) whether
their values are location-dependent or not.

Property 3.1 (Soft state vs Hard state). A P4 state
is soft if its value is computed from, or maintained de-
pending on, random variables, such as the time stamps
of events triggered by packets (e.g., arrive, enqueue, de-
queue, or leave), the occupancies of queues, meter val-
ues, etc. Otherwise, the state is considered as hard.

Soft states are typically used for optimization pur-
poses in congestion control algorithms, scheduling, and
active queue management [28]. As the values of soft
states are essentially random, the data-plane functions
tolerate inconsistency by design. As an example, in Fig-
ure 4, the states stored in lasttime and flowlet_id are
soft as they depend on packet arrival times.

In contrast, hard states are maintained deterministi-
cally and explicitly (e.g., according to a state machine)
and cannot easily be recovered from live traffic. As an
example, the packet count stored in hh_pktcnt used
by heavy-hitter detection (Figure 3) is hard. Other ex-
amples include security applications, such as stateful
firewalls or anomaly detection, whose state machines
depend on few key observations (e.g., TCP state track-
ing [30]) that only happen once in the lifetime of a flow.
The mapping between virtual IPs (VIPs) and direct IPs
(DIPs) found in any network load-balancer [11, 12] is
another example of hard state which is usually set at
the beginning of the connection.

From an update viewpoint (see Table 1), only hard
states require to be migrated as soft states can be re-
constructed at the new location of the flow, at the price
of a slightly less efficient (but still, correct) network.

Property 3.2 (Location dependency). A P4 state is
location-dependent if its value is device-specific, such as

Location Dependent Independent

Soft No migration (e.g. [2]) No migration (e.g. [3])

Hard Data-plane migration Direct migration

with transfer function (e.g. [19, 10, 20, 21, 4])

Table 1: Only hard states require to be consistently mi-
grated as soft states can directly be reconstructed at
the target device. Location-dependent states further re-
quired to be transformed to ensure compatibility.

port id, local time stamps of events triggered by packets,
or the current occupancy of a queue.

Some hard states only make sense locally and/or de-
pend on the network topology. To avoid correctness is-
sues, these hard states therefore need to be “translated”
to the corresponding state representation used at the
target device. For instance, consider a switch running
a stateful application which builds a list of MAC ad-
dresses authorized to send traffic on each physical port.
Shifting flows crossing this switch to another one re-
quires to move the corresponding decisions, while adapt-
ing the references to the physical ports to corresponding
ones on the target switch.
Swing State requires the developers to write specific

transfer functions [27] to migrate hard and location-
dependent states. While writing transfer functions re-
quires detailed knowledge of the application and the
topology, most of the location-dependent states encoun-
tered in practice are soft and therefore require no migra-
tion (nor transfer functions). Indeed, none of the state-
ful P4 programs we analyzed [3, 4, 10, 18, 19, 20, 22,
28] required transfer functions.

3.2 Flow-space dependencies
If multiple flows read and write the same state, they

should be migrated together, as doing otherwise could
cause inconsistent forwarding. Swing State needs there-
fore to be aware of the flow space using each state.

Given a P4 state, the flow space that uses it is given
by all the expressions used in the control flow selection,
action lookup, and the index calculation. Unfortunately,
P4 also supports state indexes to be computed from
runtime factors such as any other register values and
action parameters (e.g., [18]), which makes it impossible
to precisely figure out at compilation time which set of
packets share any given state.

To address this problem, Swing State considers a gen-
eralized flow space when runtime inputs are used (sim-
ilarly to [17]). Specifically, Swing State abstracts away
runtime inputs and only considers the subpart directly
parsed from the packet and employed by the state’s ref-
erence/index calculation. As an example, the precise in-
put space of lasttime’s reference (Figure 4) implicitly
involves m.pkt <= HH_THRESHOLD, the expression em-
ployed by the control flow (Figure 1). Overlooking it to
treat values in lasttime as per-flow states, indexed by
the unmodified 5-tuple, results in a conservative answer.

normal_fwd

state_pickup state_putdown

mirror_fwd mirror_fwd drop

drop

clone

clone

Source data plane A Destination data plane B

tunnel

to migrate

migrating

migrated

recorded state values original packet processed packet

Figure 5: The source and destination devices cooperate
to migrate states with different forwarding modes.

Performing the analysis For each P4 program, Swing
State Analyzer first analyzes how its match+action ta-
bles are connected and how each employed action is
implemented. It then builds a Directed Acyclic Graph
(DAG) to capture the control and data dependencies
among the involved header and metadata fields. Finally,
it infers the types of each state along with the set of flow
spaces modifying them. For this, it leverages the names
of P4 pre-defined metadata fields [23, 1]. As an illus-
tration, soft states are attached to P4 metadata fields
such as ingress_global_timestamp, deq_timedelta,
and deq_qdepth; while location-dependent states typi-
cally uses P4 metadata fields such as ingress_port.

While relying on P4 metadata fields for inferring types
is simple, it comes with two drawbacks. First, metadata
fields are platform-dependent and therefore requires ex-
pert knowledge to ensure correctness. Second, the anal-
ysis is sometimes not precise as some inferred hard states
could actually be treated as soft should we know the
high-level applications intent (as such, it is conserva-
tive). Here, enabling P4 developers to annotate how
states should be handled from a migration viewpoint
would certainly be helpful; we leave this for future work.

4. MAKING P4 STATES “SWINGABLE”
In this section, we describe how Swing State augments

P4 programs to enable runtime migration. We focus on
migrating hard states involved in the ingress pipeline
(where most of the processing lies).

4.1 Forwarding modes
Swing State achieves live state migration by introduc-

ing four types of local forwarding modes:

1. normal fwd: the default mode in which the data
plane forwards the packet normally.

2. state pickup: a mode appearing only at a migra-
tion’s source device in which the data plane: (i) for-
wards the packet normally, while recording the used
state values; and (ii) makes a clone of the original
packet, encapsulates it with the recorded values, then
tunnels it to the destination device.

3. state putdown: a mode appearing only at a migra-
tion’s destination in which the data plane: (i) de-
capsulates the packet to get its original header and
state values; (ii) processes the original header nor-

Augmented ingress pipeline

Original
ingress pipelines

Encapsulate pkt’s
recorded states

Clone;
drop

Set pkt’s
work mode

Augmented egress pipeline
Augmented to support live
state record and override

1 2 3 4

Original
egress pipelines

Figure 6: The data-plane/pipeline augmentations made
by Swing State (the modification to parsers is omitted).

mally while overriding each state before reading it;
and (iii) drops the processed packet at the end.

4. mirror fwd: a mode having different meanings for
a migration’s source and destination devices. In this
mode, the source device forwards the packet nor-
mally while tunneling a clone to the destination, while
the destination processes the decapsulated packet nor-
mally and drops.

Figure 5 illustrates how Swing State synchronizes the
data-plane states at the source and destination devices
by changing the forwarding mode assigned to packets
from normal_fwd to state_pickup to mirror_fwd. We
describe the process in more details in §5.

4.2 Program augmentations
Swing State automatically augments P4 programs to

support these forwarding modes (Figure 6). The key
insight is to let each (stateful) action itself record and
override the read state values for each packet. To achieve
this, Swing State inserts code snippets just before each
read access to hard states. For instance, consider the
stateful action set_hh_count in Figure 3: hh_pktcnt
tracks flows’ packet counts where that number of the
flow in process is hh_pktcnt[m.flow_id]. Swing State
generates metadata field _SS_m.hh_pktcnt_0 for the
reading of hh_pktcnt[m.flow_id] at Line 5 (Figure 7).

If a packet is in the mode of state_pickup, the aug-
mented set_hh_count would cache the observed value
(Line 4) and set metadata _SS_m.stateful to 1 (Line 7),
indicating the packet being processed is using states.
Then the augmented pipelines would: (i) make a clone
of the original packet (3 , Figure 6); (ii) encapsulate
the clone with this cached state value; and (iii) tun-
nel it to the target data plane (4 , Figure 6). In case
of state_putdown, the augmented parser and ingress
pipeline decapsulate the received clone and cache the
state values in _SS_m.hh_pktcnt_0 (1 , Figure 6) which
is then used by set_hh_count to overwrite the value of
hh_pktcnt[m.flow_id] (Line 3, Figure 7); finally, this
clone packet gets dropped (3 , Figure 6).

5. MANAGING STATE MIGRATION
Migrating states from switch A to B for a given flow

space f includes 4 steps.

1. Configure B to accept states destined to it.
Swing State employs specific tags (i.e., tid) to identify
concurrent migration tasks. Upon receiving an encap-
sulated packet, B’s ingress pipeline, i.e., 1 in Figure 6,

1 action set_hh_count() {
2 modify_field_with_hash_based_offset(m.flow_id,

0, l3_hash, REG_SIZE);
3 hh_pktcnt[m.flow_id] =
3 (_SS_m.pkt_wmode == state_putdown) ?
3 _SS_m.hh_pktcnt_0 : hh_pktcnt[m.flow_id];
4 _SS_m.hh_pktcnt_0 = hh_pktcnt[m.flow_id];
5 m.pktcnt = hh_pktcnt[m.flow_id] + 1;
6 hh_pktcnt[m.flow_id] = m.pktcnt;
7 _SS_m.stateful = (_SS_m.pkt_wmode
7 == state_pickup) ? 1 : _SS_m.stateful;
8 }

Figure 7: Swing StateModifier inserts Line 3 (in pink) to
enable state overrides, and inserts Line 4 and 7 (in lime)
to enable state records, by using ternary operators [1].

first checks whether this packet carries state values. If
so, 1 decapsulates the packet to get the original header,
caches the carried state values in pre-defined metadata
fields (e.g., _SS_m.hh_pktcnt_0), and sets this packet’s
work mode as state_putdown. The actions then over-
write the states read by this packet.

2. Activate A to emit f ’s states. To let A’s data
plane record f ’s states, Swing State inserts match+action
rules into 1 , so that f ’s packets would be marked as
state_pickup. If some state values have been recorded
during 2 (i.e., _SS_m.stateful==1), 3 will clone this
packet to egress pipeline via primitive action clone_i2e,
then 4 encapsulates this clone with the recorded state
values and delivers them to B via tunnel tid. From now
on, all the state values used by f would be automatically
synchronized/mirrored to its target data plane, B.

3. Wait for incoming packets. As states are piggy-
backed on traffic, Swing State waits for matching traffic
to trigger the migration process.

4. Activate mirror_fwd for f on A. After Step 3,
all f ’s state values in A and B have been synchronized.
Swing State then configures A’s 1 to set f ’s work mode
as mirror_fwd; f ’s incoming packets will be mirrored
to B. Then B processes them as normal and drops.

After Step 4, all states involving f have been migrated
and the flow can safely be moved from A to B.

6. PRELIMINARY EVALUATION
We have successfully used Swing State to analyze and

augment the P4 application shown in Figure 1.

Implementation As the API of a P4 data plane is au-
tomatically generated from its code, managing the ac-
tual state migration (using the match+action rules de-
scribed in 1 , 3 , and 4) is relatively straightforward.
Also, since the two current versions of P4, 1.0.2 and
1.1.0, are not syntactically incompatible, both the anal-
ysis and augmentations are performed on the JSON-
formed Intermediate Representations (IR) outputted by
the P4 front-end compiler and which is designed to be
consistent across different versions [7].

Figure 8: Without Swing State, the flow’s packet counts
used by heavy-hitter firewall would get lost (i.e., values
in hh_pktcnt), resulting in allowing packets that should
be dropped (the threshold of dropping is 100).

Case study We check whether the augmented P4 ap-
plication supports consistent network updates by re-
producing the example of Figure 2 (moving flows from
switch S3 to S4). We set the threshold of heavy hitter
to 100 and let S1 send packets to S2 via a TCP connec-
tion. Figure 8 shows how the number of received packets
(at S2) changes when the network is updated with and
without Swing State. With Swing State, the values of
packet counts get migrated correctly; thus, the stateful
firewall works perfectly as no update happened.

Limitations & future work While promising, the
current (preliminary) version of Swing State is limited
and requires future work. First, Swing State is not de-
signed to deal with: (i) packet re-ordering and loss; and
(ii) inconsistent hash collisions between different hash
implementations. In rare cases, these issues might lead
to inconsistent migrations. Second, Swing State does not
currently support state merging operations should the
source and the target switch have states in common.
Finally, our current implementation of Swing State can
mirror multiple times the same state value, resulting in
wasted bandwidth. A possible solution here is to filter
duplicates at the source using a bloom filter.

7. CONCLUSION
This paper introduced Swing State, a general frame-

work for migrating data-plane states for programmable
switches. By directly piggybacking state values on traf-
fic, Swing Statemigrates data-plane states without freez-
ing the traffic nor control-plane updates. We imple-
mented a Swing State prototype and showed that it
can automatically analyze and augment P4 programs
as well as successfully perform a live migration of the
states pertaining to a heavy-hitter firewall.

Acknowledgments
We would like to thank our shepherd, Jeongkeun Lee,
for his invaluable help in improving the paper and the
anonymous reviewers for their constructive feedback.
Shouxi Luo was supported by the China Scholarship
Council during his stay at ETH Zürich.

8. REFERENCES
[1] Official extension to P4 v1.1 spec. https://github.com/

p4lang/tutorials/tree/master/p4v1 1/simple router.
[2] P4 OpenState applications.

https://github.com/OpenState-SDN/openstate.p4.
[3] P4 SIGCOMM 2015 Tutorial Exercise 2:

Implementing TCP flowlet switching. https://github.
com/p4lang/tutorials/tree/master/SIGCOMM 2015.

[4] P4 SIGCOMM 2016 Tutorial: Implementing Heavy
Hitter Dectection. https://github.com/p4lang/
tutorials/tree/master/SIGCOMM 2016.

[5] The World’s Fastest & Most Programmable Networks.
Barefoot Networks White paper, 2016.

[6] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford,
and D. Walker. SNAP: Stateful Network-Wide
Abstractions for Packet Processing. In SIGCOMM,
New York, NY, USA, 2016. ACM.

[7] A. Bas. Enabling fast P4 development with bmv2. P4
Workshop 2016.

[8] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.
OpenState: Programming Platform-independent
Stateful Openflow Applications Inside the Switch.
SIGCOMM CCR, 44(2):44–51, Apr. 2014.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker. P4:
Programming Protocol-independent Packet
Processors. SIGCOMM CCR, 44(3):87–95, July 2014.

[10] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and
R. Soulé. NetPaxos: Consensus at Network Speed. In
Symposium on SDN Research, SOSR ’15, New York,
NY, USA, 2015. ACM.

[11] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith,
R. Kononov, E. Mann-Hielscher, A. Cilingiroglu,
B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A
Fast and Reliable Software Network Load Balancer. In
NSDI, pages 523–535, Santa Clara, CA, USA, Mar.
2016. USENIX Association.

[12] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,
L. Yuan, and M. Zhang. Duet: Cloud Scale Load
Balancing with Hardware and Software. In
SIGCOMM, New York, NY, USA, 2014. ACM.

[13] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling Innovation in Network Function Control. In
SIGCOMM. ACM, 2014.

[14] S. Ghorbani, C. Schlesinger, M. Monaco, E. Keller,
M. Caesar, J. Rexford, and D. Walker. Transparent,
Live Migration of a Software-Defined Network. In
Proceedings of the ACM Symposium on Cloud
Computing, SOCC ’14, pages 3:1–3:14, New York, NY,
USA, 2014. ACM.

[15] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
High Utilization with Software-driven WAN. In
SIGCOMM. ACM, 2013.

[16] E. J. Jackson, M. Walls, A. Panda, J. Pettit, B. Pfaff,
J. Rajahalme, T. Koponen, and S. Shenker. SoftFlow:
A Middlebox Architecture for Open vSwitch. In
USENIX ATC, pages 15–28, Denver, CO, USA, June
2016. USENIX Association.

[17] J. Khalid, A. Gember-Jacobson, R. Michael,
A. Abhashkumar, and A. Akella. Paving the Way for

NFV: Simplifying Middlebox Modifications Using
StateAlyzr. In NSDI, pages 239–253, Santa Clara, CA,
Mar. 2016. USENIX Association.

[18] J. Klomp. P4 VPN Authentication; Authentication of
VPN Traffic on a Network Device with P4. Technical
report, University of Amsterdam, July 2016.

[19] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and
D. R. K. Ports. Just Say NO to Paxos Overhead:
Replacing Consensus with Network Ordering. In
OSDI, pages 467–483, GA, 2016. USENIX Association.

[20] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A
Better NetFlow for Data Centers. In NSDI, Santa
Clara, CA, USA, Mar. 2016. USENIX Association.

[21] Y. Li, R. Miao, C. Kim, and M. Yu. LossRadar: Fast
Detection of Lost Packets in Data Center Networks. In
CoNEXT, pages 481–495, New York, NY, USA,
December 2016. ACM.

[22] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and
V. Braverman. One Sketch to Rule Them All:
Rethinking Network Flow Monitoring with UnivMon.
In SIGCOMM, New York, NY, USA, 2016. ACM.

[23] The P4 Language Consortium. The P4 Language
Specification, version 1.1.0 edition, January 2016.

[24] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson,
A. Zhou, J. Rajahalme, J. Gross, A. Wang,
J. Stringer, P. Shelar, K. Amidon, and M. Casado.
The Design and Implementation of Open vSwitch. In
NSDI, pages 117–130, Berkeley, CA, USA, 2015.
USENIX Association.

[25] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/Merge: System Support for Elastic
Execution in Virtual Middleboxes. In NSDI, Lombard,
IL, USA, 2013. USENIX Association.

[26] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for network update. In
SIGCOMM, New York, NY, USA, 2012. ACM.

[27] K. Saur, J. Collard, N. Foster, A. Guha, L. Vanbever,
and M. Hicks. Safe and Flexible Controller Upgrades
for SDNs. In Proceedings of the Symposium on SDN
Research, SOSR ’16, New York, NY, USA, 2016. ACM.

[28] A. Sivaraman, A. Cheung, M. Budiu, C. Kim,
M. Alizadeh, H. Balakrishnan, G. Varghese,
N. McKeown, and S. Licking. Packet transactions:
High-level programming for line-rate switches. In
SIGCOMM, New York, NY, USA, 2016. ACM.

[29] H. Song. Protocol-oblivious Forwarding: Unleash the
Power of SDN Through a Future-proof Forwarding
Plane. HotSDN ’13, New York, NY, USA, 2013. ACM.

[30] B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee,
and J.-M. Kang. SFC-Checker: Checking the Correct
Forwarding Behavior of Service Function Chaining. In
IEEE SDN-NFV Conference, 2016.

[31] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and
O. Bonaventure. Seamless network-wide IGP
migrations. In ACM SIGCOMM 2011 conference,
pages 314–325. ACM, 2011.

[32] S. Vissicchio and L. Cittadini. Flip the (flow) table:
Fast lightweight policy-preserving sdn updates. In
INFOCOM. IEEE, 2016.

[33] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe,
and J. Rexford. Virtual Routers on the Move: Live
Router Migration As a Network-management
Primitive. In SIGCOMM, pages 231–242, New York,
NY, USA, 2008. ACM.

https://github.com/p4lang/tutorials/tree/master/p4v1_1/simple_router
https://github.com/p4lang/tutorials/tree/master/p4v1_1/simple_router
https://github.com/OpenState-SDN/openstate.p4
https://github.com/p4lang/tutorials/tree/master/SIGCOMM_2015
https://github.com/p4lang/tutorials/tree/master/SIGCOMM_2015
https://github.com/p4lang/tutorials/tree/master/SIGCOMM_2016
https://github.com/p4lang/tutorials/tree/master/SIGCOMM_2016

	Introduction
	Motivation
	Background
	Overview

	Static analysis
	State taxonomy
	Flow-space dependencies

	Making P4 states ``swingable''
	Forwarding modes
	Program augmentations

	Managing state migration
	Preliminary Evaluation
	Conclusion
	References

